Atoms and Elements

Chapter 2

Imaging Atoms

- March 6, 1981
 - Scanning tunneling microscopy allowed Gerd Binnig and Heinrich Rohrer to "see" the first

Individual atoms

The word atom written with atoms in Japanese

atoms.

Heinrich Rohrer

Gerd Binnig

Chemistry: The Science in Context 2/e Figure 1.5a Mason Morfit/Taxi/Getty Images

Silicon Wafer

Individual Silicon atoms

Law of conservation of mass

• Mass is neither created nor destroyed in a chemical reaction.

• In an ordinary chemical reaction, the total mass of reacting substances is equal to the total mass of products formed.

Practice problems <u>Tro</u> - 2.4, 2.31-2.32, 2.91

Law of Constant composition (Law of Definite Proportions)

• Different samples of a pure chemical substance always contain the same proportion of elements by mass.

• The relative amount of each element in a particular compound is always the same, regardless of the source of the compound or how it was made.

Practice problems <u>Tro</u> - 2.5, 2.33-2.36,

Law of Multiple Proportions

• If two elements combine in different ways to form different substances, the mass ratios are small, whole number multiples of each other.

Practice problems <u>Tro</u> – 2.6-2.7, 2.37-2.40, 2.113

Atomic Theory

- Elements (matter) is composed of small, indivisible particles called <u>atoms</u>.
- Atoms of a given element are identical in mass and behavior.
- Atoms of different elements differ in mass and behavior.
- Chemical combination of elements to make different substances occurs when atoms join together in small whole number ratios.
- Chemical reactions only rearrange the way the atoms are combined; the atoms themselves are not changed.

Practice problems $\underline{\text{Tro}} - 2.8, 2.41-2.42$

Sub Atomic Particles

- Thompson determined charge/mass ratio for an electron.
 - Charge/mass = 1.758820 x 108 C/g

- Millikan determined the charge on an electron.
 - Charge = 1.602176 x 10⁻¹⁹ C

Leading to the mass of an electron

mass = $9.109382 \times 10^{-29} g$

Atoms are composed of

Protons	+ charge	1.67x10 ⁻²⁴ g	nucleus
Neutrons	no charge	1.67x10 ⁻²⁴ g	nucleus
Electrons	– charge	9.11x10 ⁻²⁸ g	Around nucleus

Practice problems

<u>Tro</u> – 2.12-2.15, 2.44, 2.49-2.52

If a proton had the mass of a baseball, an electron would have the mass of a rice grain.

Atomic Number

- = Z
- number of protons in an atom.
 number of electrons in a neutral atom.

Neutrons

- What do neutrons do?
 - Help keep protons together buffers charge
 - -Generally 1-1.5 neutrons per proton
 - -Have little effect on chemistry

Isotopes

• Atoms which differ only in the number of neutrons present in the nucleus.

Mass number (number of protons plus neutrons) - Symbol of element Atomic number (number

of protons or electrons)

Carbon - 12Mass Number Element name Practice problems <u>Tro</u> – 2.16-2.17, 2.53-2.58

H hydrogen		Time of Discovery									He helium						
Li	Be		Before 1800 1800–1849 1850–1899							B	C	N	O	F	Ne		
lithium	beryllium		1900–1949 1950–1999							boron	carbon	nitrogen	oxygen	fluorine	neon		
Na sodium	Mg magnesium								Al aluminum	Si silicon	P phosphorus	S sulfur	Cl chlorine	Ar argon			
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium		manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
cesium	barium	lathanum	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
Fr francium	Ra radium	Ac actinium	Rf rutherfordium	Db dubnium	Sg seaborgium	Bh bohrium	Hs hassium	Mt meitnerium	Ds darmstadtium	Rg roentgenium							
											-						

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium

(a)

(b)

Oxygen: 65%
 Carbon: 18%
 Hydrogen: 10%
 Nitrogen: 3%

Calcium: 1.5%Phosphorus: 1%

Other: 1.5%

Copyright © 2008 Pearson Prentice Hall, Inc.

The Periodic Law

A Simple Periodic Table

Elements with similar properties fall into columns.

Major Divisions of the Periodic Table

_	1A 1																	8A 18
1	1 H	2A 2			Metals		Met	alloids		Nonm	netals		3A 13	4A 14	5A 15	6A 16	7A 17	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg	3B 3	4B 4	5B 5	6B 6	7B 7	8	— 8B - 9	10	1B 11	2B 12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112		114		116		
			Lantha	nides	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
			Acti	nides	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Copyright © 2008 Pearson Prentice Hall, Inc.

Noble gases

Copyright © 2008 Pearson Prentice Hall, Inc.

Atomic Mass

- The weighted average of the isotopic masses of an element's naturally occurring isotopes.
- Atomic mass unit amu

Mass Spectrometer

Relative mass

Isotopes of Neon

isotope	Atomic mass	Natural Abundance	
²⁰ Ne	19.99	90.51%	
²¹ Ne	20.99	0.27%	
²² Ne	21.99	9.22%	

Isotopes of Neon

isotope	Atomic mass	Natural Abundance	Mass of 100 atoms
²⁰ Ne	19.99	90.51%	(19.99 amu)(90.51atoms) = 1809 amu
²¹ Ne	20.99	0.27%	(20.99 amu)(.27 atoms) = 6 amu
²² Ne	21.99	9.22%	(21.99 amu)(9.22 atoms) = 203 amu
weighted			1809 + 6 + 203
average			= 2018 amu/100 atoms or 20.18 amu/atom

Practice problems <u>Tro</u> – 2.73-2.78, 2.108-2.109, 2.112

Mole (mol)

- Number of particles in atomic mass in grams of an element.
- Number of molecules/formula units in the molar mass in grams of a compound
- 6.02×10^{23} particles.

26.98 g aluminum = 1 mol aluminum = 6.022×10^{23} Al atoms

12.01 g carbon = 1 mol carbon = 6.022×10^{23} C atoms

4.003 g helium = 1 mol helium = 6.022×10^{23} He atoms Copyright © 2008 Pearson Prentice Hall, Inc.

One tablespoon of water contains approximately one mole of water molecules.

Twenty-two copper pennies contain approximately 1 mol of copper atoms.

How many water molecules are in one drop of water? (One drop of water is 1/20 of a mL, and the density of water is 1.0 g/mL.)

• How many hydrogen atoms are in a drop of water?

Practice problems $\underline{\text{Tro}} - 2.79 - 2.90, 2.102 - 2.104, 2.106 - 2.107, 3.59 - 3.64$