Atoms and Elements

Chapter 2

Imaging Atoms

- March 6, 1981

- Scanning tunneling microscopy allowed Gerd Binnig and Heinrich Rohrer to "see" the first atoms.

Heinrich Rohrer

Gerd Binnig

Individual atoms

The word atom written with atoms in Japanese

Silicon Wafer

Individual Silicon atoms

Law of conservation of mass

- Mass is neither created nor destroyed in a chemical reaction.
- In an ordinary chemical reaction, the total mass of reacting substances is equal to the total mass of products formed.

Law of Constant composition (Law of Definite Proportions)

- Different samples of a pure chemical substance always contain the same proportion of elements by mass.
- The relative amount of each element in a particular compound is always the same, regardless of the source of the compound or how it was made.

Law of Multiple Proportions

- If two elements combine in different ways to form different substances, the mass ratios are small, whole number multiples of each other.

Atomic Theory

- Elements (matter) is composed of small, indivisible particles called atoms.
- Atoms of a given element are identical in mass and behavior.
- Atoms of different elements differ in mass and behavior.
- Chemical combination of elements to make different substances occurs when atoms join together in small whole number ratios.
- Chemical reactions only rearrange the way the atoms are combined; the atoms themselves are not changed.

Sub Atomic Particles

(a)

(b)

(c)

- Thompson - determined charge/mass ratio for an electron.

- Charge $/$ mass $=1.758820 \times 108 \mathrm{C} / \mathrm{g}$

Copyright © 2008 Pearson Prentice Hall, Inc.

electron.

- Millikan - determined the charge on an
- Charge $=1.602176 \times 10^{-19} \mathrm{C}$

Leading to the mass of an electron
mass $=9.109382 \times 10^{-29} \mathrm{~g}$

96 Cm
 Curium

Copyright © 2008 Pearson Prentice Hall, Inc.

Atoms are composed of

Protons + charge $1.67 \times 10^{-24} \mathrm{~g}$ nucleus

Neutrons no charge $1.67 \times 10^{-24} \mathrm{~g}$ nucleus
Electrons - charge $9.11 \times 10^{-28} \mathrm{~g}$ Around nucleus

Practice problems
Tro $-2.12-2.15,2.44,2.49-2.52$

If a proton had the mass of a baseball, an electron would have the mass of a rice grain.

Copyright © 2008 Pearson Prentice Hall, Inc.

Atomic Number
$=\mathrm{Z}$
$=$ number of protons in an atom. $=$ number of electrons in a neutral atom.

Neutrons

- What do neutrons do?
-Help keep protons together - buffers charge
-Generally 1-1.5 neutrons per proton
-Have little effect on chemistry

Isotopes

- Atoms which differ only in the number of neutrons present in the nucleus.

Mass number (number of protons plus neutrons)

$\underset{\text { cerium }}{\mathrm{Ce}}$	$\left\|\begin{array}{c} \mathbf{P r} \\ \text { prasedymium } \end{array}\right\|$	$\underset{\text { neodymium }}{\mathrm{Nd}}$	$\underset{\text { promethium }}{\text { Pm }}$	$\underset{\text { samarium }}{\mathrm{Sm}}$	$\left\lvert\, \begin{gathered} \text { europium } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { gd } \\ \text { gadolinium } \end{gathered}\right.$	Tb terbium	$\underset{\text { dysprosium }}{\text { Dy }}$	$\underset{\text { holmium }}{\text { Ho }}$	$\underset{\text { erbium }}{\mathrm{Er}}$	$\operatorname{Tmm}_{\text {thulium }}$	$\underset{\text { ytterbium }}{\mathbf{Y b}}$	$\underset{\text { lutetium }}{\mathbf{L u}}$
$\underset{\text { thorium }}{\text { Th }}$	$\underset{\text { protactinium }}{\mathrm{Pa}}$	$\underset{\text { uranium }}{\mathbf{U}}$	$\underset{\text { neptunium }}{\mathbf{N p}}$	$\underset{\text { plutonium }}{\mathrm{Pu}}$	$\underset{\text { americium }}{\text { Amm }}$	Cm curium	$\begin{array}{\|c\|} \text { Berkelium } \end{array}$	$\underset{\text { californium }}{\text { Cf }}$	$\underset{\text { einsteinium }}{\text { Es }}$	$\underset{\text { fermium }}{\mathbf{F m}}$	$\underset{\text { mendelevium }}{\text { Md }}$	$\underset{\text { nobelium }}{\text { No }}$	$\underset{\text { lawrencium }}{\mathbf{L r}}$

Copyright © 2008 Pearson Prentice Hall, Inc.

(a)

Relative abundance in the human body																	
$\mathrm{H} \leftarrow 10 \%$ He He																	
Li	Be											B				F	Ne
Na	Mg											Al	Si	P	S	Cl	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac															

(b)

■ Oxygen: 65\%

- Carbon: 18\%

Hydrogen: 10% Other: 1.5%Nitrogen: 3\%

The Periodic Law

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
H	He	Li	Be	B	C	N	O	F	Ne	Na	Mg	Al	Si	P	S	Cl	Ar	K	Ca
Elements with similar properties recur in a regular pattern.																			

Copyright © 2008 Pearson Prentice Hall, Inc.

A Simple Periodic Table

3	4	5	6	7	8	9	10
Li	Be	B	C	N	O	F	Ne
11	12	13	14	15	16	17	18
Na	Mg	Al	Si	P	S	Cl	Ar
19	20						
K	Ca						

Elements with similar properties fall into columns.

Copyright © 2008 Pearson Prentice Hall, Inc.

Major Divisions of the Periodic Table

Copyright © 2008 Pearson Prentice Hall, Inc.

Copyright © 2008 Pearson Prentice Hall, Inc.

Alkali metals

Alkaline earth metals

Copyright © 2008 Pearson Prentice Hall, Inc.
Copyright © 2008 Pearson Prentice Hall, Inc.

Halogens

Noble gases

Copyright © 2008 Pearson Prentice Hall, Inc.

Copyright © 2008 Pearson Prentice Hall, Inc.

Atomic Mass

- The weighted average of the isotopic masses of an element's naturally occurring isotopes.
- Atomic mass unit - amu

Mass Spectrometer

Copyright © 2008 Pearson Prentice Hall, Inc.

Isotopes of Neon

isotope	Atomic mass	Natural Abundance
${ }^{20} \mathrm{Ne}$	19.99	90.51%
${ }^{21} \mathrm{Ne}$	20.99	0.27%
${ }^{22} \mathrm{Ne}$	21.99	9.22%

Isotopes of Neon

isotope	Atomic mass	Natural Abundance	Mass of 100 atoms
${ }^{20} \mathrm{Ne}$	19.99	90.51%	$(19.99 \mathrm{amu})(90.51 \mathrm{atoms})$ $=1809 \mathrm{amu}$
	20.99	0.27%	$(20.99 \mathrm{amu})(.27$ atoms $)$ $=6 \mathrm{amu}$
${ }^{21} \mathrm{Ne}$	21.99	9.22%	$(21.99 \mathrm{amu})(9.22 \mathrm{atoms})$ $=203 \mathrm{amu}$
${ }^{22} \mathrm{Ne}$		$1809+6+203$ $=2018 \mathrm{amu} / 100 \mathrm{atoms}$ or $20.18 \mathrm{amu} / \mathrm{atom}$	
weighted			

Mole (mol)

- Number of particles in atomic mass in grams of an element.
- Number of molecules/formula units in the molar mass in grams of a compound
- 6.02×10^{23} particles.
26.98 g aluminum $=1 \mathrm{~mol}$ aluminum $=6.022 \times 10^{23} \mathrm{Al}$ atoms
12.01 g carbon $=1 \mathrm{~mol}$ carbon $=6.022 \times 10^{23} \mathrm{C}$ atoms
4.003 g helium $=1 \mathrm{~mol}$ helium $=6.022 \times 10^{23} \mathrm{He}$ atoms
- He

Copyright © 2008 Pearson Prentice Hall, Inc.

One tablespoon of water contains approximately one mole of water molecules.

Copyright © 2008 Pearson Prentice Hall, Inc.

Twenty-two copper pennies contain approximately 1 mol of copper atoms.

Copyright © 2008 Pearson Prentice Hall, Inc.

- How many water molecules are in one drop of water? (One drop of water is $1 / 20$ of a mL , and the density of water is $1.0 \mathrm{~g} / \mathrm{mL}$.)
- How many hydrogen atoms are in a drop of water?

